连接器
提供连接器专业设计、开发、生产以及专业连接器技术支持和服务
 
支持
连接器理论基础手册

第四章 接触弹片材料

  • 铜合金在电气和电连接器上得到了很广泛的应用,其原因是由于它具有良好的传导性能、强度、成型性以及抗腐蚀性能。在本章中将从连接器使用者的观点,来对商业上可加以利用且其性能适合于运用在连接器上的合金进行其性能的对比。然而与连接器制造相关的重要性能也没有被忽略,因为它们同样也影响合金材料的选择。除了一些对连接器来说独特重要的方面,一般的关于铜合金的信息读者都可从参考目录1-4中得到指导。
  • 如表4.1中所总结的,当选择合金材料时连接器产品的功能性需求如设计因素和材料性能之间的相互关系将会共同作用。合金的种类能满足产品的功能性需求以及其所分布的功能和如4.1部分中所总结的它们在碾磨过程中的总的方面。铜合金将会在4.2部分中由一般术语进行回顾,更专业的将会在4.3部分中的合金中另以叙述。
  • 4.1 主要的铜连接器合金

    4.1.1铜合金的制造

  • 铜合金材料在运用于连接器的加工过程中,先是被加工成为薄片状的板材,然后切成条带形状以适应后面的冲压过程的需要。线材同样应用于连接器中,但是在端子组件和其它类型的连接器中这样的材料应用得很少。
  • 图4.1描述了一个典型的薄板和条带铜合金的制造流程。此外在参考书目3中可以得到更详细的描述。合金线材以同样的方式制造但具有几个显著的特点:热挤压,轧制,和通过冲模的拉拔以改变热轧制和冷轧制在板材中的应用,以及退火处理过程经常用于这种产品。
  • 溶炼和铸造
  • 铜合金是最先用于可回收的商业应用的金属之一,这是因为工业上能用经济的办法将铜合金中的杂质维持在一个较低的水平。溶炼常用于电溶炉之中而少见于铜合金在真空和惰性气体下的溶炼和铸造过程中。碳层能提供一足够的保护。此外,利用真空或特殊的空气环境将会很大的增加合金制造的成本。
  • 氢、氧和碳的污染影响由溶炼过程和热力学方法来平衡其溶炼层进行控制,其中氢能溶解于铜,氧能与铜和一些合金元素形成氧化物,而碳能与有碳化物组分的合金起反应。溶炼控制包括纯电解阴极铜和有选择的兼容合金碎屑。当一些纯组分如镍、锡、硅或起支配作用的合金如磷、铍、和铬合金组分增加时,都会引起合金成份改变。
  • 板材锻造的制造过程是从不连续的铸造成大矩形横截面金属锭或薄铸片开始的。前述大金属锭的典型尺寸为约150毫米厚,300到900毫米宽,并且经过热轧制处理以有效的减少其厚度并消除在铸造过程中残余的铸造微片。另一种铸造方法是薄铸片(常用于窄条状铸造材料),其典型的尺寸是约15毫米厚,150到450毫米宽,这些薄铸片将直接转到冷轧过程之中。选择条形铸造是基于经济上的考虑因素(热研磨需要较高的资金成本)以及合金的特性(一些铜合金不容易在热条件下工作)。
  • 前述半连续且大的金属锭在铸造过程中垂直利用一个中空水冷的铜模,在开始时此铜模的下底部被封住。溶化的金属实际上并未象图4.1中所示的直接进入溶模。此溶化的金属通过一流槽及分配系统进入溶模,分配系统能通过一陶制阀系统控制金属的流量。底关闭部从溶模中降低,此时形成一稳定的固体外壳以容纳溶化的金属。铸造将继续进行直到一直冷(DC)金属锭形成以足够热轧制的长度。直冷(DC)金属锭处理的经济上的优点是几个金属锭可当溶炉中的溶化金属加入相邻的溶模时同时形成。此外接着通过热轧制在厚度方面的分离是一个快速有效的方法,尽管在轧制以前要经过重新加热。
  • 水平方向进行的条状铸造将会产生呈盘旋状的薄片,此薄片的厚度是与冷轧中第一次分离的轧磨容易相配合的。薄片在制造中被切成盘旋状而不影响其铸造过程。铸造后的表面将会重新研磨加工以形成高的表面精度。锡青铜大多数情况下用于条状加工是因为其较差热环境下的工作性能,而黄铜可广泛用于热轧制中的大部分应用范围,一些合金制造商还将其用于条状铸造加工中。
  • 热轧制直冷锭在几小时之内加热以用于特殊合金温度的需要,这样就能通过回动研磨将其从25~150毫米的厚度减少约10~25毫米。在热轧制中快速减少其厚度是可能的,因为其温度变化可使合金快速再结晶而不是硬化。典型的预热温度是从850到950℃。溶炉环境能有效的将氧化过程减小到中性的程度。此阶段形成的氧化物对其要求并不严格,因为现有的热轧制片将会在研磨中把表面氧化物及缺陷部清除。此外更重要的是热处理抹掉了纹理粗糙的铸造结构,这样就能达到均匀和较好的效果。
  • 当热轧制完成后,而在水喷淬火及盘卷之前时轧薄片的温度大约在600℃左右。接着是用机械方法去除热轧制后的表面和边缘,此后合金片将要经过一系列的冷轧和退火处理以降低其表面粗糙度,其中退火处理能提高纹理的微观结构、促进其均匀性并得到所需的性能。
12345678910下一页
反馈 联络 留言 链接 地图